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The measurement of the degree of symmetry proved to be a useful tool in the prediction
of quantitative structural–physical correlations. These measurements have been based, in
the most general form, on the folding/unfolding algorithm, for which we provide here a new
and simpler proof. We generalize this proof to the case of objects composed of more than
one (full) orbit. An important practical issue we consider is the division of the graph into
symmetry orbits and the mapping of the symmetry group elements onto the points of the
graph. The logical constraints imposed by the edges of the graph are reviewed and used for
the successful resolution of the coupling between different orbits.

1. Background: The measurement of symmetry by the “folding–unfolding”
approach

The measurement of the degree of symmetry content of structures [1,2,4,5,9–
12,20] proved to be useful in the elucidation of quantitative correlations between
physical [3,5,6,15], chemical [7,14], biochemical [8,19] and even archeological [18]
observables and symmetry. It is a new approach which, we believe, carries much
potential in better understanding of problems of structural chemistry. It therefore
needs continuous improvements, additions of computational tools and better proofs
as to their task of providing the global minimum solutions. This is the topic of this
report; it concentrates on the “folding–unfolding” (FU) algorithm (desribed below)
which was devised to provide a minimal solution to the following definition of the
symmetry measure:

S(G) =
1
Nα

N∑
j=1

(
pj − p̂j

)2
. (1)

Here, p1, . . . , pN are the vertices of the original graph (V ,E) embedded in the Euclid-
ean space and used to represent a structure of interest, p̂1, . . . , p̂N are the vertices of
a G-symmetric graph with the same connectivity as the original one, N is the num-
ber of graph points and α is a size normalization factor, taken as either the maximal
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(a) (b) (c) (d)

Figure 1. An illustration (adapted from [21]) of the folding/unfolding method. Given a mapping of the
group elements onto the points of the object (a) (e → p1, c3 → p2, c2

3 → p3), the points are folded by
applying the inverse element on the points (b), the resulting cluster is averaged (c), and unfolded (d) by

applying the proper symmetry element.

distance from the center of mass to the farthest vertex [22] or as the r.m.s. distance of
all vertices from that center.1

The task has been then to find the closest G-symmetric graph, p̂1, . . . , p̂N , to
the original graph p1, . . . , pN , such that S(G) is minimal. The FU algorithm, which
was designed to solve this problem and is described in detail below, is exemplified
in figure 1: each point of the graph is mapped to an element g of G, the symmetry
group, bundling points into induced orbits. Each point is transformed under g−1

(folded) creating clusters that are averaged and unfolded (transformed under g) to
form the closest symmetric graph. A proof that the FU algorithm indeed leads to
the minimal S(G) was derived using Lagrange multipliers [22]. The FU method is
general, but it implicitly assumes that the reference frame of the symmetric operation
is known i.e., that the orientation of the symmetry elements relative to the object
is known. In some cases, closed-form solutions for the orientation of the symmetry
elements were obtained (e.g., [17,23]); in others, iterative minimization procedures
are used (e.g., Cn, n > 2, symmetry in 3D). Another computational approach was
developed recently, tailored to the problem of finding the minimal distance of a given
structure to a desired general shape with the same number of vertices. That approach
is general from a point of view not shared with the FU algorithm: it allows one
to determine the distance from any required shape, symmetric or not, and is based
solely on the minimization of relative size and mutual orientation between the original
structure and the target shape [13].2 It solved a problem encountered with the FU
approach, namely that for multiple vertices structures with highly connected graphs
such as the polyhedra, the computation quickly becomes cumbersome for reasons we

1 We represent an object (a molecule in most cases) by a graph, (V ,E), embedded in the Euclidean space
and a weight distribution function (DF), ρ(pj) = ωj . For simplicity of notation, we discuss only the
uniform DF, ρ(pj) = 1/N , as the derivation below can be easily generalized to any DF. It should be
emphasized that the weight of the DF is concentrated solely at the vertices of the graph and that the
edges represent only logical relations between the vertices.

2 Interestingly, this approach links the continuous symmetry measure as expressed by equation (1) with
the correlation coefficient probability measure of having a specific symmetry.
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discuss below (see section 3.1). Yet the FU algorithm remains at the moment the most
general approach, and hence we resort to its further perfection: we provide here a
simpler proof that the FU algorithm leads to the minimal S(G) and generalize it to the
case where the object is decomposed into more than one (full) induced orbit; and we
discuss the role of the logical symmetry of the graph.

2. Proof that the folding–unfolding algorithm leads to the minimal value of
the symmetry measure

2.1. Introductory comments: The division of the graph into orbits

A symmetric object is invariant under symmetry operations and the points of the
symmetric object divide into closed sets, orbits, where a point in an orbit transforms
by a symmetry operation into another point in the same orbit. This does not apply to
the pre-symmetrized object, but the bijective (one-to-one) mapping between the points
(and edges) of the pre-symmetrized and the symmetrized objects induces a division
of the pre-symmetrized object into induced orbits. Furthermore, the symmetry group
defines relations between the points of the symmetric object which might be viewed as
a mapping of the group elements onto the orbit’s points. These relations are induced
onto the pre-symmetrized object as well and define an internal ordering of the points of
the pre-symmetrized object. The number of possible divisions of the graph into induced
orbits is finite, and so is the number of possible mappings of the group elemets onto
each orbit. Therefore, in principle, it is possible to find the closest symmetric object
for every such division and internal ordering. However, one has to take into account
the relations between the elements of the symmetry group as well. These are most
clearly studied by examining the closest symmetric orbit p̂1, . . . , p̂k, where k is the
size of H , a subgroup of G. Indeed, the definition of a partial orbit is its invariance
under the operations of H . The relations between the points of the orbit are

p̂1 = f1
(
p̂1
)
, p̂2 = f2

(
p̂1
)
, . . . , p̂k = fk

(
p̂1
)
, (2)

where f1, . . . , fk are the elements of H and f1 is the identity operation. The points
p̂1, . . . , p̂k have a nontrivial stabilizer. (The stabilizer of a point x is the set of the sym-
metry operations of G under which operation it is invariant, i.e., {g ∈ G | g(x) = x}.)
Denoting the elements of the stabilizer by s1, . . . , sd (s1 is again the identity) we may
write down the operations of G in the following manner:

G =


s1f1, s1f2 · · · s1fk,
s2f1, s2f2 · · · s2fk,

...
...

...
...

sdf1, sdf2 · · · sdfk

 . (3)

Every row is a class of G and every operation in the ith column translates p̂1 to p̂i.
A 2D example is the equilateral triangle graph. The points of that graph define an
orbit under the operations of the C3 group, which is a subgroup of D3. Here, e (the
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identity) and σ (a reflection through a line passing through one of the vertices and the
mass center) compose the stabilizer:

D3 =

{
e, c3, c2

3,
σ, σc3, σc2

3

}
. (4)

The internal order between the points of a partial orbit can be determined by the
internal order of the operations of H . Grouping the symmetry operations of G by the
columns of equation (3) we get the following identities:

p̂1 = gi
(
p̂1
)
, i = 1, . . . , d,

p̂2 = gi
(
p̂1
)
, i = d+ 1, . . . , 2d,

(5)
...

p̂k = gi
(
p̂1
)
, i = (k − 1)d+ 1, . . . , kd = m;

if i = d(x− 1) + y (1 6 x 6 k, 1 6 y 6 d), then gi = syfx.
Duplicating p̂1, . . . , p̂k orbit d times we may define a bijective mapping of the G

onto the duplicated orbit,

d · Ô =
{
p̂1, . . . , p̂1︸ ︷︷ ︸

d

, p̂2, . . . , p̂2︸ ︷︷ ︸
d

, . . . , p̂k, . . . , p̂k︸ ︷︷ ︸
d

}
,

according to equation (3). In its turn a bijective mapping of the operations of G onto
the duplicated induced orbit,

d ·O =
{
p1, . . . , p1︸ ︷︷ ︸

d

, p2, . . . , p2︸ ︷︷ ︸
d

, . . . , pk, . . . , pk︸ ︷︷ ︸
d

}
,

can be inferred by the same rule. We return to these issues in the discussion.

2.2. Proof that the mass centers of the original and symmetrized structures coincide

We prove first that, in order for equation (1) to provide the minimal S value, the
mass centers of the original object, ω = (1/N )

∑N
j=1 pj , and of the symmetrized object,

ω̂ = (1/N )
∑N

j=1 p̂j , should coincide. Assuming the contrary we have ω− ω̂ = ε 6= 0.

Without loss of generality we may assume that ω̂ = 0 and then (1/N )
∑N

j=1 p̂j = ε.
It turns out that the object P ′ = {p̂1 + ε, . . . , p̂N + ε} is closer to the original object:

S(P )− S
(
P ′
)

=
1
N

∑
i

(
pi − p̂i

)2 − 1
N

∑
i

(
pi −

(
p̂i + ε

))2

=
2ε
N

∑
i

pi − ε2 = ε2 > 0, (6)

a contradiction to the assumption that ω̂ is the mass center of the closest symmetric
object.
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The constraint on the mass center of the closest symmetric object is the basic
coupling between the different orbits. A variation of the location of a point in one
orbit varies the location of the mass center through which all symmetry elements pass
and, therefore, has an effect on all of the points of the object. It should be noted
that for some symmetries (e.g., inversion and Cn in 2D) the mass center is all that is
needed to determine the orientation of the symmetry elements and the calculation for
the different orbits is totally separable.

2.3. Proof of the FU algorithm

We begin with a full induced orbit, p1, . . . , pm (where m is the size of G), and, as
explained above, we search for the closest symmetric orbit p̂1, . . . , p̂m. The symmetry
of p̂1, . . . , p̂m is made explicit by writing down the relations between the points in
term of the symmetry operations:

p̂1 = p̂1, p̂2 = g2
(
p̂1
)
, . . . , p̂m = gm

(
p̂1
)
. (7)

As the symmetry operations are distance preserving, we have

S =
1
m

∑
i

(
pi − p̂i

)2
=

1
m

∑
i

(
g−1
i (pi)− g−1

i

(
p̂i
))2

=
1
m

∑
i

(
g−1
i (pi)− p̂1

)2
. (8)

It turns out that the only unknown is p̂1, but the closest point (by mean squares) to a
cluster is its average and, therefore, S(G) is minimized when p̂1 = (1/m)

∑
i g
−1
i (pi).

The other points p̂2, . . . , p̂m are given by equation (7).
We have thus found a formula for the calculation of the closest symmetric orbit.

We have also made explicit the mapping of the group elements onto the points of the
induced orbit: gj ↔ p̂j ↔ pj . We may reverse our argument and deduce the internal
ordering of the symmetric orbit by a mapping of the group elements onto the induced
orbit. Searching through all the possible internal orderings of p1, . . . , pm, i.e., the
(bijective) mapping of gk onto pj , one finds the closest symmetric (full) orbit.

The extension of the proof for partial orbits, following the above introductory
comments, becomes straightforward: the same steps are followed, except that, since
we duplicated the orbit by d (the size of the stabilizer), we divide the sum of squares
by d:

S =
1

d · f
∑
i

(
pi − gi

(
p̂1
))2

=
1
m

∑
i

(
g−1
i (pi)− p̂1

)2
. (9)

Note that {pi} is the duplicated set of points according to equation (5). Again, p̂1 is
the only unknown and minimization is achieved when p̂1 = (1/m)

∑
i g
−1
i (pi).

Concluding the proof we note that although p̂1 is an average of a cluster of the
size of G where all the elements of G are used in the folding process, the unfolding
is achieved by the operation of the elements of H alone:

p̂i = fi
(
p̂i
)
, i = 1, . . . , k. (10)
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3. Discussion and comments on the proof

3.1. The division of the graph into orbits

The proof provided in section 2 requires some further comments and clarifications,
which we address in this section. The first refers to the question of finding the proper
internal orderings and divisions of the graph. We first examine the question of finding
a proper internal ordering for one orbit and then generalize the procedure to manage
the division into several (induced) orbits as well. Our proof of the folding/unfolding
method has emphasized the relation between the points of an orbit (or better, the points
of an induced orbit) and the group elements. The question that arises is, how to find
the mapping of the group elements onto the induced orbit that minimizes S? Scanning
over the possible mappings of the group elemets onto the points of an induced orbit is
simplified if we note that one set can be held in constant order (e.g., the points), while
the other set is permuted. The reason this is true is that only the internal order in which
the points of the induced orbit are folded is important. Consider, for example, a full
orbit. We show that two mappings of G onto p1, . . . , pm are equivalent if they are
shifted by gα (an operation of G), i.e., we show that by mapping g1 → p1, g2 → p2,
. . . , gm → pm and by mapping gαg1 → p1, gαg2 → p2, . . . , gαgm → pm, the same
symmetric object is obtained.

By application of the folding step in the first case, p̂1 is calculated: p̂1 =
(1/m)

∑
i g
−1
i (pi). It is enough to show then that the same expression is obtained

in the second case. This is done as follows: note that, in the first case, p̂1 is the point
closest to p1, the point onto which the identity operation is mapped. In the second
case, p̂1 is the point, which we denote as p̂α, which is closest to pα, the point onto
which g−1

α is mapped in the first case. Thus, denoting gigα by fi, the expression in
the second case is

p̂α =
1
m

m∑
i=1

f−1
i (pi) =

1
m

m∑
i=1

g−1
α g−1

i (pi) = g−1
α

1
m

m∑
i=1

g−1
i (pi) (12a)

or

p̂α = g−1
α p̂1, (12b)

and we have shown that p̂α is the point which is closest to pα, the point onto which
g−1
α was mapped in the first case. The generalization to the partial orbit case is along

the same lines as in the proof of the previous section.
Having proved that one set (the group elemets or the points) may be held constant,

we address the question which constraints are imposed on these mappings by the graph.
Choosing to hold the operation of the group constant, the different mappings of G onto
an orbit may be viewed as placing the points of the orbit into bins – the different group
elements. Searching over all the mappings of the group elements onto the points of an
orbit is therefore analogous to checking all the permutations of points of the orbit. This
point of view can be applied to the general case where the object is divided into several



Y. Salomon, D. Avnir / Continuous symmetry measures 301

(induced) orbits. Since permutations can be treated as internal mappings of the graph –
permutations may always be expressed as cycles – the problem is reduced to finding the
internal mappings of the graph, constrained by two considerations: graph constraints
and symmetry constraints: a point is permuted to another one only if it is totally
equivalent. The graph constraints a mapping pj → pk to be proper only if, for every
pair (pj , pk), pj and pk have the same number of edges and only if each neighbor of pj
is properly mapped to a neighbor of pk. To study the symmetry constraints recall that
saying that a graph is G-symmetric is equivalent to saying that the application of every
element gk of G on the graph implies a change of labeling of the graph: for every vertex
pj and every edge (pi, pj), there are vertex gk(pj) and edge gk(pi, pj) = (gk(pi), gk(pj)).
Such a permutation does not change any feature of the graph.

Two comments are in order here. First, edges connecting vertices within an
orbit always satisfy the above relations/constraints. Second, not all edges (connecting
different orbits) have to be checked. As we will see below this check may sometimes
be reduced to a compact form. An example is the Cn symmetry case, where the edges
connecting different orbits need not be checked at all! This is due to the fact that
different orbits are coupled only by the symmetry axis of rotation. In such cases, the
validation of the division to orbits reduces into checking that these divisions are of the
size of an orbit. In other cases (cf. section 3.2), the validation of the symmetry of the
edges requires the explicit examination of existence of gk(pi, pj) = (gk(pi), gk(pj)) at
least for a reduced set of operations. Coupling and its consequence will be discussed
in the next section.

The set of proper internal mappings can be extracted by a recursive precedure,
testing at each consequent step whether a mapping is proper. As the graph is finite,
the process would either end with a proper mapping or reach a dead end where none
of the unmapped points has a proper match. In this case, the process will return to
a previous step, searching for another mapping. Table 1 summarizes the procedure
in pseudo-code. The search over the set of permutation (or automorphisms of graph)
seems a demanding task, but is greatly simplified using the information encoded in
the edges of the graph. The general equivalence between points of the graph can
be determined by the relatively fast procedure of Rucker et al. [16]. Indeed, if the
graph has no edges, all points are equivalent and all permutations are permitted by
the graph. It should be emphasized that such cases rarely occur in practical problems.
Highly connected graphs pose the same problems, since there are many options at each
stage of the recursion. In the case of the classical polyhedra, another computational
approach is given in [13]. Given the general scheme of the procedure of the mapping
of the group operations onto the points of the graph we now discuss the question of
coupling between orbits.

3.2. The coupling between orbits

As noted above, in some cases, the coupling between orbits is restricted to vari-
ation of the location of their mass centers, and, therefore, the calculation is separated
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Table 1
Pseudo-code for the mapping procedure.

//Given a graph G(V ,E), build all the possible permutations of equivalent vertices according
to the symmetry group and other related data.
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - The initializing step- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
permute(vertex 0, graph G, array permutation)
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The basic function- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
permute(vertex i, graph G, array permutation)
{

while (not all possibilities were extracted)
{find j, the next possible equivalent vertex of vertex i, according to rules 1–5 (below)

permute(j, G, permutation)}
(end while)
back up one level (if it was vertex 0, then exit)
}
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The rules by which vertex j may or may not match vertex i:

1. A cycle of the permutation must be of the size of a subgroup of the symmetry group
specified.

2. Equivalent vertices must have the same color (type).
Two vertices (i, j) may permute if:

3. They have the same valency (coordination).
4. Each neighbor of i is mapped onto a neighbor of j.
5. If a neighbor of i is not matched yet, then j has a neighbor that may be a possible match

for that neighbor of i.

(a) (b)

Figure 2. (a) The 2D triskelion, a C3 symmetric object used in the text. (b) A 3D variant of the triskelion
that has an additional two-point orbit (points p1 and p2).

to the different orbits. An example that will further clarify the coupling of orbits is
the calculation of the closest Dn symmetric object in 2D, taking as a particular case
the C3-symmetric triskelion (figure 2(a)). For the calculation of S (Dn, n = 3 in this
case), we use a generalization of the solution given in [23], described in the appendix.

The solution to the Dn problem illustrates the way constraints imposed by the
edges of the graph and the group symmetry should be taken into account. We develop
our example in 2D, but as the following can be generalized to three dimensions, we
denote the σ operations as c2 operations orthogonal to the main rotation axis or c+2 .
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(a) (b)

Figure 3. An illustration of the relation between the elements of the Dn symmetry group: (a) in the case
of a full orbit, (b) in the case of a partial n-orbit (cf. equations (15) and (16)).

First we consider the possible mapping of the group elements onto a Dn symmetric
object and then, as usual, we induce these mappings onto the pre-symmetrized object.
The different orbits are coupled by the c+2 operations: given a Dn symmetric object
and an edge of the graph e(i, j), then for every c+2 symmetry element (orthogonal
to the main rotation axis) there exists a c+2 symmetric edge e(c+2 (i), c+2 (j)) such that
e(c+2 (i), c+2 (j)) = c+2 [e(i, j)], i.e., the c+2 rotated edge is the edge connecting the c+2
rotated points. The whole process of symmetrization is formulated in terms of op-
erations on the points of the graph, therefore we wish to formulate this constraint in
these terms as well. To make the formulation clearer we denote each point of an orbit
by a representative element of the symmetry group that is mapped onto it. Thus, in
the case of a full (induced) orbit, the point onto which the cin is mapped is denoted
by cin. In the case of a partial orbit of n vertices, c+2 c

i
n is mapped onto the point as

well. As a convention, we will denote this point again by cin. We may now write the
constraints in terms of constraints on the vertices of the graph. These constraints are
illustrated in figure 3(a) and (b) for the full and n-orbit, respectively. In the case of a
full (induced) orbit,

c+2
(
cin
)

= c+2 c
n−i
n , (15)

i.e., the operation of the c+2 element on the point onto which the cin is mapped trans-
forms it to the point onto which the c+2 c

n−i
n element is mapped. From the fact that

(c+2 )2 = e, we conclude that

c+2
(
c+2 c

i
n

)
= cn−in .

In the case of a partial orbit of n vertices, the constraint is reduced to

c+2
(
cin
)

= cn−in . (16)
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Two trivial cases are left: the first is the case of a singleton. In this case,
the question onto which point of the orbit a group element is mapped under the c+2
transformation is meaningless, as all group elements are mapped onto the same point.
The second case is a two-point orbit occurring, for example, in figure 2(b), a 3D
variation of a triskelion. In this case, the mapping of the group elements is e, cn,
c2
n, . . . , cn−1

n → p1 and c+2 , c+2 cn, c+2 c
2
n, . . . , c+2 c

n−1
n → p2 and, therefore,

c+2
(
cin
)

= c+2 c
n−i
n ,

i.e., edges connected to p1 are transformed onto edge connected to p2. In the passing
we note that figure 2(b) was used by Moreau [12] as an example where his method of
averaging local chirality contributions to a global chirality measure does not identify
the chirality of objects from this family; the continuous symmetry measure approach
is devoid of this problem.

Finally, one should note that edges that connect points within the same orbit need
not be checked as they connect totally equivalent points, and, therefore, every such
edge transforms to an equivalent edge. We conclude this section by noting that, though
the edges of the graph are “weightless”, they still affect the way the CSM is assessed
and that the information encoded by the edges can be efficiently used by selection of
the proper coupling between the points of the graph.

In summary, we have presented a simplification and generalization of the proof of the
folding unfolding method and addressed the question of coupling between different
induced orbits. In our formalism, the logical role of the edges in the graph model is
emphasized: the symmetry of edges is deduced from the symmetry of the points they
connect and used to constrain the allowed internal maps of the graph.

Appendix. Calculation of best orientation of the Dn elements in 2D

The problem. As noted above, there is a difficulty with the folding/unfolding method
which does not determine explicitly the best orientation of the symmetry elements
relatively to the pre-symmetrized object. In this appendix we exemplify a method
for the determination of the orientation of these elements for the 2D case. Thus, we
provide a generalization of [23] which dealt only with the case of full orbits. To
make the derivation simpler, we begin with the simple case of the calculation of the
orientation of the 2D D1 symmetry (= 2D reflection symmetry) and use it as a leverage
for the more general solution.

(i) 2D reflection symmetry. In this simple case – the degenerate Dn problem – the
only cn element is the identity. Therefore the division of the graph is into two sets
only: points folded by the reflection element and points that the identity is mapped
onto them (and are not reflected).

Our aim is the calculation of θ, the angle of the reflection axis relative to the x–y
coordinates of the pre-symmetrized object, such that minimizes S = (1/N )

∑
i(pi−p̂i)2
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or S̃ =
∑

i(pi − p̂i)2. These expressions consist of two contributions: the sum over
the full orbits (two-point orbits) and the sum over the singletons. Thus, one has to
minimize

S̃ =
∑
pairs

[(
pi1 − p̂i1

)2
+
(
pi2 − p̂i2

)2]
+

∑
singletons

(
pi − p̂i

)2
. (A.1)

The folding/unfolding method gives the expression for p̂i (in the singleton case) and for
p̂i1 and p̂i2 (in the two-point orbit case) in terms of pi and of pi1 and pi2, respectively.
After substitution of these expressions in equation (A.1) and a little algebra we get

S̃ =
1
2

∑
pairs

[
p2
i1 + p2

i2 − 2pi1σ(pi2)
]

+
1
2

∑
singletons

[
p2
i − piσ(pi)

]
. (A.2)

Taking the derivative of this expression with respect to θ, the terms independent of θ
may be dropped:

dS̃
dθ

=
d

dθ

∑
pairs

[
−pi1σ(pi2)

]
+

1
2

d
dθ

∑
singletons

[
−piσ(pi)

]
. (A.3)

Writing down the explicit expression for the reflection matrix and the points of the
object by their coordinates we have

σ(pi) = σ

[
x
y

]
=

[
x cos(2θ) + y sin(2θ)
x sin(2θ)− y cos(2θ)

]
(A.4)

and

dS̃
dθ

=− d
dθ

∑
pairs

[
xi1
(
xi2 cos(2θ) + yi2 sin(2θ)

)
+ yi1

(
xi2 sin(2θ)− yi2 cos(2θ)

)]
− 1

2
d

dθ

∑
singletons

[
xi
(
xi cos(2θ) + yi sin(2θ)

)
+ yi

(
xi sin(2θ)− yi cos(2θ)

)]
. (A.5)

Equating this expression to zero we get

tan(2θ) =
2
∑

pairs[xi1yi2 + xi2yi1] + 2
∑

singletons xiyi

2
∑

pairs[xi1xi2 − yi1yi2] +
∑

singletons[x2
i − y2

i ]
. (A.6)

(ii) 2D Dn symmetry. The next goal is the calculation of the reflection lines in the Dn

case. Here, the cn elements are involved in the calculation, and our aim is to eliminate
this extra complication and to reduce it to the previous simpler case. Since, as shown
above, the mass center is one point through which the reflection lines must pass, it is
the point which determines the main axis of rotation. The lines of reflection are set
2π/n apart, and, therefore, it is enough to determine one of them, which we designate
by σ. As we shall see below, the analogy to the simple case is achieved by collecting
the elements of the minimization equation by the elements of the partial symmetry
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group Cn. The resulting expression is formally close to the folding expression. First,
we define some notation. The elements of the symmetry group are

Dn =

{
e, cn, c2

n, . . . , cn−1
n ,

σ, σcn, σc2
n, . . . , σcn−1

n

}
. (A.7)

Indexing the points of an induced orbit by the mapping of the elements of the symmetry
group onto the orbit, the point mapped onto cjn is p2j+1, j = 0, . . . ,n − 1, and the
point mapped onto σcjn is p2j+2, j = 0, . . . ,n − 1. Noting that (σcjn)−1 = σc−jn , we
first derive an expression for p̂1 for different types of orbits beginning with the full
(2n) orbit:

p̂1 =
1

2n

[
n−1∑
j=0

c−jn p2j+1 + σ
n−1∑
j=0

c−jn p2j

]
=

1
2n

(T1 + σT2), (A.8)

where

T1 ≡
n−1∑
j=0

c−jn p2j+1, T2 ≡
n−1∑
j=0

c−jn p2j.

A similar expression is derived for the n-orbit case. The partial symmetry group in
this case is Cn and the stabilizer is {e,σ}; the expression for p̂1 can be written as a
sum of two contributions:

p̂1 =
1

2n

[
n−1∑
j=0

c−jn pj + σ
n−1∑
j=0

c−jn pj

]
=

1
2n

(T + σT ), (A.9)

where T ≡
∑n−1

j=0 c
−j
n pj is the Cn folded set of points.

Two cases are left – the singleton and pair orbits. However, these do not affect
the orientation of the reflection lines, as, regardless of what is the orientation the
points of the closest symmetric object belonging to such orbits, they will be located
at the mass center. Therefore we need not include such points in the calculation. The
contribution of different orbits to S̃ is

∑2n
j=1 p

2
j − 2np̂ 2

i in the case of a full orbit and∑n
j=1 p

2
j − np̂ 2

i in the case of an n-orbit. Therefore

S̃ =
∑

2n-orbits

[
2n∑
j=1

p2
j − 2np̂ 2

i

]
+
∑

n-orbits

[
n∑
j=1

p2
j − np̂ 2

i

]
. (A.10)

The dependency of S̃ on σ is given by the expressions for p̂i1 (i is the index of the
different orbits):

dS̃
dθ

=−2n
d

dθ

∑
2n-orbits

p̂ 2
i1 − n

d
dθ

∑
n-orbits

p̂ 2
i1
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=−2n
d
dθ

∑
2n-orbits

1
4n2 (Ti1 + σTi2)2 − n d

dθ

∑
n-orbits

1
4n2 (Ti + σTi)

2

=− 1
2n

d
dθ

∑
2n-orbits

(Ti1 + σTi2)2 − 1
4n

d
dθ

∑
n-orbits

(Ti + σTi)
2. (A.11)

Equating to zero and multiplying by 2n we arrive at an expression similar to equa-
tion (A.3) where, instead of pi, pi1 and pi2, we have Ti, Ti1 and Ti2:

dS̃
dθ

= 0 = − d
dθ

∑
2n-orbits

[Ti1σTi2]− 1
2

d
dθ

∑
n-orbits

[TiσTi]. (A.12)

Therefore an expression similar to equation (A.6) will give the orientation of σ, where
the x’s and y’s are the coordinates of the T ’s. The alignment of the other reflection
lines is immediately deduced, taking σk = cknσ.
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